

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education

Advanced Subsidiary Level and Advanced Level

COMPUTING

Paper 2: Practical Tasks

May/June 2005

 READ THESE INSTRUCTIONS FIRST

 Write your Centre number, candidate number and name on all the work you hand in.
 Write in dark blue or black pen on both sides of the paper.
 Do not use staples, paper clips, highlighters, glue or correction fluid.

 Answer all questions.
 The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 6 printed pages and 2 blank pages.

IB05 06_9691_02/FP

 UCLES 2005 [Turn over

2

© UCLES 2005 9691/02/M/J/05

Answer all questions

Task 1 [22 marks]

This is a design and implementation task

At a university a lecturer may teach many modules and a module may be taught by many lecturers.

Lecturers have an office and a telephone number. Several lecturers, who may have to share a
telephone, may use an office. An office is identified by a 5-character code consisting of two
uppercase letters followed by three digits such as AB123. The telephone number consists of four
digits such as 0362. The lecturer’s name is the only personal data to be stored.

Modules have a module code consisting of two letters and four digits such as IT1002. Each module
has a title such as Information Technology.

 (a) Design a database, consisting of three tables, to store the data. You should include
evidence showing the attributes of the tables together with their data types and any validation
rules you have used. Screen dumps are acceptable for this purpose. [11]

Create sufficient data to complete the rest of this task. Provide copies of your completed tables.
Screen dumps are acceptable for this purpose.

(b) (i) Create a form that will allow the user to add a lecturer to the appropriate table.

(ii) Create a form that will allow the user to add a module to the appropriate table.

(iii) Create a form that will allow a user to link a lecturer to a module. The form should allow
the user to choose a lecturer from a list and to choose a module from a list. [6]

(c) Create a query that, when run, requests a user to select a lecturer and then lists all the
modules taught by that lecturer. Include evidence that your query works correctly. [2]

(d) Create a report that lists the lecturers for each module. The report should group the
information on module code and have appropriate headings. Include evidence that your
report is correct. [3]

3

© UCLES 2005 9691/02/M/J/05 [Turn over

Task 2 [18 marks]

This is a white box test task. No implementation is required.

Read the following algorithm for a procedure, called Validate, in which each step has been numbered.

Validate(aString)

1 Length = Len(aString)

2 If Length = 0 Then

3 Output "Empty string is not allowed"

4 Else

5 OK = TRUE

6 DP = FALSE

7 Count = 1

8 Ch = 1st character of aString

9 IF Ch < "0" OR Ch > "9" THEN

10 OK = FALSE

11 ELSE

12 WHILE Count < Length AND OK DO

13 Count = Count + 1

14 Ch = next character in aString

15 IF Ch = "." THEN

16 IF DP THEN

17 OK = FALSE

18 ELSE

19 DP = TRUE

20 ENDIF

21 ELSE

22 IF Ch < "0" OR Ch > "9" THEN

23 OK = FALSE

24 ENDIF

25 ENDIF

26 ENDWHILE

27 ENDIF

28 IF OK THEN

29 Output "Valid string"

30 ELSE

31 Output "Invalid string"

32 ENDIF

33 ENDIF

34 END PROCEDURE Validate

The function Len(aString) returns the number of characters in aString. For example, if aString =
"Computer", Len(aString) = 8.

4

© UCLES 2005 9691/02/M/J/05

When the procedure is called with

 Validate("58")

the lines

 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 21, 22, 24, 25, 26,12, 26, 27,
 28, 29, 30, 32, 33, 34

are executed and the output is

 Valid string.

The example test above can be described as shown in Table 2.1.

Path Test Data Expected Output

1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 21, 22,
24, 25, 26,12, 26, 27, 28, 29, 30, 32, 33, 34

58 Valid string.

Table 2.1

Using a table similar to Table 2.1, write down the lines that are executed and the output when the
procedure is called with

(i) Validate(".376"); [4]

(ii) Validate("4.9"); [7]

(iii) Validate("6.2.7"). [7]

5

© UCLES 2005 9691/02/M/J/05 [Turn over

Task 3 [20 marks]

This is a design and implementation task

You are to design and create a very simple binary calculator using a high-level language of your
choice. A binary calculator can only use the digits 0 and 1. This calculator will allow the user to enter
two unsigned binary numbers and will then allow the user to add, subtract, multiply or divide these
numbers. In the case of division, the result should be truncated to a whole number. This is
equivalent to integer division. The result is to be displayed in binary.

To do this you are advised to follow these steps.

(a) Design an interface that will allow the user to input two unsigned binary numbers and will
display them in two boxes. The user should then be able to choose addition, subtraction,
multiplication or division. There should be a box to show the result of the calculation. The
user should also be able to clear all the boxes. (No processing is required at this stage.) [4]

(b) Create a function, called BinaryToDecimal, that will accept a binary number as a parameter
and will return its decimal equivalent. For example,

BinaryToDecimal(101101) will return the decimal value 45.

 You may use the following algorithm to do this.

 Input the binary number as a string
 Total = 0
 For each binary digit in the string, starting on the left,
 Total = Total * 2 + value of digit
 Return Total

 You should clearly annotate your code and use meaningful names for variables and other
objects such as buttons and text boxes (if you use them). You should include a copy of your
code as evidence. [4]

(c) Create a function, called DecimalToBinary, that will accept a decimal number as a parameter
and will return its binary equivalent. For example,

DecimalToBinary (47) will return the binary value 101111.

 You may use the following algorithm to do this.

 Input the decimal number called Number
 Binary = "" 'Empty string
 Repeat
 Remainder = remainder after Number is divided by 2
 Number = Whole part of Number divided by 2
 Binary = String value of Remainder & Binary
 Until Number = 0

 & means concatenation. For example

"1010" & "1" = "10101"

 You should clearly annotate your code and use meaningful names for variables and other
objects such as buttons. You should include a copy of your code as evidence. [4]

6

© UCLES 2005 9691/02/M/J/05

(d) Create code for each of the operations of addition, subtraction, multiplication and division.
You are advised to change the binary numbers input by the user to decimal, do the operation
and then convert the result back to binary before displaying it. You should include a copy of
your code as evidence. [3]

(e) Create a set of test data that shows that the operations of addition, subtraction, multiplication
and division work and provide evidence that you have used this data. Screen dumps are
acceptable but must show the data entered and the result of the operation. [5]

7

 9691/02/M/J/05

BLANK PAGE

8

Every reasonable effort has been made to trace all copyright holders. The publishers would be pleased to hear from anyone whose rights we have unwittingly
infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department
of the University of Cambridge.

 9691/02/M/J/05

BLANK PAGE

